Archivo para la categoría 'avanzada NTP'

Leap Second Errors and Configuration

Domingo, enero 18, 2009

Además de las celebraciones habituales y el jolgorio, a fines de diciembre trajeron consigo otro Leap Second para UTC tiempo (Tiempo Universal Coordinado).

UTC es la escala de tiempo global utilizada por las redes informáticas de todo el mundo para garantizar que todos mantengan el mismo tiempo. Los Segundos Leap se agregan a UTC mediante el Servicio Internacional de Rotación de la Tierra (IERS) en respuesta a la desaceleración de la rotación de la Tierra debido a las fuerzas de marea y otras anomalías. Si no se inserta un segundo intercalar, UTC se alejaría de GMT (Greenwich Meantime), a menudo denominado UT1. GMT se basa en la posición de los cuerpos celestes, por lo que a mediodía el sol está en su punto más alto sobre el meridiano de Greenwich.

Si UTC y GMT se separaran, dificultaría la vida de personas como los astrónomos y los agricultores, y eventualmente la noche y el día se desviarían (aunque en mil años más o menos).

Normalmente, los segundos intercalares se agregan al último minuto de 31 de diciembre pero ocasionalmente si se requiere más de uno en un año, luego se agrega en el verano.

Los segundos intercalares, sin embargo, son controvertidos y también pueden causar problemas si el equipo no está diseñado con segundos interminables en mente. Por ejemplo, el segundo intercalar más reciente se agregó en 31 diciembre y provocó que fallara el gigante de la base de datos Oracle Cluster Ready Service. Como resultado, el sistema se reinicia automáticamente en Año Nuevo.

Leap Seconds también puede causar problemas si las redes se sincronizan utilizando fuentes de tiempo de Internet o dispositivos que requieren intervención manual. Afortunadamente la mayoría dedicada NTP servidores están diseñados con Leap Seconds en mente. Estos dispositivos no requieren intervención y ajustarán automáticamente toda la red a la hora correcta cuando haya un segundo de salto.

Un dedicado Servidor NTP no solo es autoajustable sin intervención manual sino que también son altamente precisos siendo servidores 1 (la mayoría de las fuentes de tiempo de Internet son dispositivos 2 de estratos, es decir, dispositivos que reciben señales horarias de los dispositivos 1 de estratos y luego lo vuelven a emitir) pero también son altamente seguro que los dispositivos externos no están obligados a estar detrás del firewall.

La sincronización de tiempo del servidor NTP es más fácil

Viernes, enero 16th, 2009

Sincronización de tiempo a menudo se describe como un "dolor de cabeza" por los administradores de red. Mantener las computadoras en una red funcionando todas al mismo tiempo es cada vez más importante en las comunicaciones de red modernas, especialmente si una red tiene que comunicarse con otra red que funciona de manera independiente.

Por esta razón UTC (Tiempo universal coordinado) se ha desarrollado para garantizar que todas las redes ejecutan la misma escala de tiempo precisa. UTC se basa en el tiempo contado por relojes atómicos así que es muy preciso, nunca pierde ni un segundo. Sincronización de tiempo de red es, sin embargo, relativamente sencillo gracias al protocolo NTP (Network Time Protocol).

Las fuentes de tiempo UTC están ampliamente disponibles con más de mil servidores 1 de estrato en línea disponibles en Internet. El nivel del estrato describe qué tan lejos hora del servidor es a un reloj atómico (una reloj atómico que genera UTC se conoce como un dispositivo de estrato 0). La mayoría de los servidores de tiempo disponibles en Internet no son, de hecho, dispositivos 1 de estratos, sino estrato, ya que obtienen su tiempo de un dispositivo que a su vez recibe la señal horaria UTC.

Para muchas aplicaciones, esto puede ser lo suficientemente preciso, pero como estas fuentes de sincronización están en Internet, es muy poco lo que puede hacer para garantizar su precisión y precisión. De hecho, incluso si una fuente de Internet es altamente precisa, la distancia de distancia puede causar retrasos en la señal de tiempo.

Las fuentes de tiempo de Internet también son inseguras ya que están situadas fuera del cortafuegos forzando a la red a dejarse abierta para las solicitudes de tiempo. Por este motivo, los administradores de red que se toman en serio la sincronización horaria optan por utilizar su propio servidor 1 de estrato externo.

Estos dispositivos, a menudo llamados Servidor NTP, reciba una fuente de hora UTC de una fuente confiable y segura, como un satélite GPS, y luego distribúyala entre la red. los Servidor NTP es mucho más seguro que una fuente de tiempo basada en Internet y es relativamente económico y altamente preciso.

Servidor NTP Sincronización de tiempo para Dummies

Miércoles, enero 14th, 2009

Sincronización de tiempo es extremadamente importante para las redes de computadoras modernas. En algunas industrias, la sincronización del tiempo es absolutamente vital, especialmente cuando se trata de tecnologías como el control del tráfico aéreo o la navegación marina, donde cientos de vidas podrían verse en peligro por falta de tiempo.

Incluso en el mundo financiero, la sincronización de tiempo correcta es vital ya que se pueden agregar millones o borrar los precios de las acciones cada segundo. Por esta razón, el mundo entero se adhiere a un calendario global conocido como tiempo universal coordinado (UTC) Sin embargo, adherirse a UTC y mantener UTC preciso son dos cosas diferentes.

La mayoría de los relojes de la computadora son osciladores simples que se moverán lentamente más rápido o más despacio. Desafortunadamente, esto significa que no importa cuán precisos sean los lunes, se habrán desviado el viernes. Esta deriva puede ser de solo una fracción de segundo, pero pronto no pasará mucho tiempo antes de que transcurra más de un segundo.

En muchas industrias esto puede no significar una cuestión de vida o muerte por la pérdida de millones en acciones y acciones, pero la falta de sincronización de tiempo puede tener consecuencias imprevistas, como dejar a una compañía menos protegida contra el fraude. Sin embargo, recibir y mantener el verdadero tiempo UTC es bastante sencillo.

Dedicado servidores de tiempo de red están disponibles que usa el protocolo NTP (Protocolo de tiempo de red) para verificar continuamente la hora de una red contra una fuente de tiempo UTC. Estos dispositivos a menudo se conocen como Servidor NTP, servidor de tiempo o servidor de tiempo de red. los Servidor NTP ajusta constantemente todos los dispositivos en una red para garantizar que las máquinas no se desvíen de UTC.

UTC está disponible en varias fuentes, incluida la red GPS. Esta es una fuente ideal de tiempo UTC ya que es segura, confiable y está disponible en todo el planeta. UTC también está disponible a través de transmisiones de radio nacionales especializadas que se transmiten desde laboratorios nacionales de física aunque no están disponibles en todas partes.

Historial del servidor NTP adquiriendo precisión

Lunes, enero 12th, 2009

Cuando echamos un vistazo a nuestros relojes o al reloj de la oficina, solemos dar por hecho que el tiempo que nos dedicamos es el correcto. Podemos observar si nuestros relojes son diez minutos rápidos o lentos, pero presten poca atención si están un segundo o dos fuera.

Sin embargo, durante miles de años, la humanidad ha caminado para llegar cada vez más relojes precisos los beneficios de los cuales son abundantes hoy en nuestra era de navegación por satélite, NTP servidores, Internet y comunicaciones globales.

Para comprender cómo se puede medir el tiempo exacto, primero es importante comprender el concepto de tiempo en sí mismo. El tiempo como se ha medido en la Tierra durante milenios es un concepto diferente del tiempo mismo que, como nos informó Einstein, era parte de la estructura del universo en lo que describió como un espacio-tiempo tetradimensional.

Sin embargo, históricamente hemos medido el tiempo basado no en el paso del tiempo sino en la rotación de nuestro planeta en relación con el Sol y la Luna. Un día se divide en 24 partes iguales (horas), cada una de las cuales se divide en 60 minutos y el minuto se divide en 60 segundos.

Sin embargo, ahora se ha comprendido que medir el tiempo de esta manera no puede considerarse exacto ya que la rotación de la Tierra varía día a día. Todo tipo de variables como fuerzas de marea, huracanes, vientos solares e incluso la cantidad de nieve en los polos afecta la velocidad de rotación de la Tierra. De hecho, cuando los dinosaurios comenzaron a vagar por la Tierra, la duración de un día tal como la medimos ahora solo habría sido de 22 horas.

Ahora basamos nuestra cronometría en la transición de átomos usando relojes atómicos con un segundo basado en períodos 9,192,631,770 de la radiación emitida por la transición hiperfina de un átomo de cesio sin unión en el estado fundamental. Si bien esto puede sonar complicado, en realidad es solo un "tic" atómico que nunca se altera y, por lo tanto, puede proporcionar una referencia muy precisa para basar nuestro tiempo en.

Los relojes atómicos usan esta resonancia atómica y pueden mantener un tiempo tan preciso que un segundo no se pierde ni siquiera en mil millones de años. Todas las tecnologías modernas aprovechan esta precisión que permite muchas de las comunicaciones y el comercio mundial que nos beneficiamos hoy con la utilización de la navegación por satélite, NTP servidores y el control del tráfico aéreo cambiando la forma en que vivimos nuestras vidas.

El servidor NTP y la razón del reloj atómico para la precisión

Sábado, enero 10th, 2009

En una era de relojes atómicos y Servidor NTP el mantenimiento del tiempo ahora es más preciso que nunca con una precisión cada vez mayor que permite muchas de las tecnologías y sistemas que ahora damos por sentados.

Mientras que el cronometraje ha sido siempre una preocupación de la humanidad, solo ha sido en las últimas décadas que la verdadera precisión ha sido posible gracias al advenimiento de la reloj atómico.

Antes del tiempo atómico, los osciladores eléctricos como los que se encuentran en el reloj digital promedio eran la medida más precisa del tiempo y, aunque los relojes electrónicos como estos son mucho más precisos que sus predecesores (los relojes mecánicos, todavía pueden desplazarse hasta un segundo por semana) .

Pero, ¿por qué el tiempo debe ser tan preciso, después de todo, qué tan importante puede ser un segundo? En el día a día de nuestras vidas, un segundo no es tan importante y los relojes electrónicos (e incluso mecánicos) proporcionan un cronometraje adecuado para nuestras necesidades.

En nuestra vida cotidiana, un segundo hace poca diferencia, pero en muchas aplicaciones modernas un segundo puede ser una edad.

La navegación por satélite moderna es un ejemplo. Estos dispositivos pueden ubicar una ubicación en cualquier lugar del planeta a unos pocos metros. Sin embargo, solo pueden hacerlo debido a la naturaleza ultraprecisa de los relojes atómicos que controlan el sistema, ya que la señal horaria enviada desde los satélites de navegación viaja a la velocidad de la luz, que es casi 300,000 km por segundo.

Como la luz puede recorrer una distancia tan grande en un segundo, cualquier reloj atómico que rija un sistema de navegación satelital que estaba a tan solo un segundo de distancia, el posicionamiento sería inexacto en miles de millas, haciendo que el sistema de posicionamiento sea inútil.

Hay muchas otras tecnologías que requieren una precisión similar y también muchas de las formas en que comerciamos y nos comunicamos. Las acciones y las acciones fluctúan hacia arriba y hacia abajo cada segundo y el comercio global requiere que todos en todo el mundo tengan que comunicarse al mismo tiempo.

La mayoría de las redes de computadoras se controlan usando un Servidor NTP (Protocolo de tiempo de red). Estos dispositivos permiten que las redes de computadoras utilicen la misma escala de tiempo basada en reloj atómico UTC (tiempo universal coordinado). Utilizando UTC a través de un servidor NTP, las redes de computadoras se pueden sincronizar en unos pocos milisegundos entre sí.

Servidor NTP que ejecuta una red (Parte 2)

Jueves, enero 8th, 2009

Organizando Estratos

Los niveles de estratos describen la distancia entre un dispositivo y el reloj de referencia. Por ejemplo, un reloj atómico basado en un laboratorio de física o un satélite de GPS es un dispositivo de estrato 0. UN estrato 1 dispositivo es un servidor de tiempo que recibe el tiempo de un dispositivo de estrato 0 por lo que cualquier Servidor NTP es el estrato 1. Los dispositivos que reciben el tiempo del servidor horario, como computadoras y enrutadores, son dispositivos 2 de estrato.

NTP puede admitir hasta niveles de estrato 16 y, aunque hay una disminución en la precisión, los niveles de estrato más alejados están diseñados para permitir que grandes redes reciban un tiempo de un único servidor NTP sin causar congestión en la red o un bloqueo en el ancho de banda .

Cuando se usa un Servidor NTP es importante no sobrecargar el dispositivo con solicitudes de tiempo, por lo que la red debe dividirse con un número selecto de máquinas que reciban solicitudes de la Servidor NTP (el fabricante del servidor NTP puede recomendar el número de solicitudes que puede manejar). Estos dispositivos 2 de estrato pueden usarse diez como referencias de tiempo para otros dispositivos (que se convierten en dispositivos 3 de estrato) en redes muy grandes, que luego pueden usarse como referencias de tiempo.

Servidor NTP que ejecuta una red (Parte 1)

Martes, Enero 6th, 2009

NTP servidores son una herramienta vital para cualquier empresa que necesita comunicarse de forma global y segura. Los servidores NTP distribuyen el Tiempo Universal Coordinado (UTC), la escala de tiempo global del mundo basada en el tiempo altamente preciso que cuentan los relojes atómicos.

NTP (Protocolo de tiempo de red) es el protocolo utilizado para distribuir la hora UTC a través de una red; también garantiza que todo el tiempo sea preciso y estable. Sin embargo, existen muchas dificultades para configurar una Red NTP, aquí están los más comunes:

Usar la fuente de tiempo correcta

Lograr la fuente de tiempo más adecuada es fundamental para configurar una red NTP. La fuente de tiempo se distribuirá entre todas las máquinas y dispositivos en una red, por lo que es vital que no solo sea precisa sino también estable y segura.

Muchos administradores de sistemas reducen las esquinas con una fuente de tiempo. Algunos decidirán utilizar una fuente de tiempo basada en Internet, aunque estos no son seguros ya que el firewall requerirá una apertura y también muchas fuentes de Internet son completamente inexactas o demasiado lejanas como para proporcionar una precisión útil.

Hay dos métodos altamente seguros de recibir una fuente de tiempo UTC. El primero es utilizar la red GPS que, si bien no transmite UTC, Tiempo de GPS se basa en el tiempo atómico internacional y, por lo tanto, es fácil de convertir para NTP. Las señales de tiempo GPS también están disponibles en todo el mundo.

El segundo método es usar las señales de radio de onda larga emitidas por algunos laboratorios físicos nacionales. Sin embargo, estas señales no están disponibles en todos los países y tienen un alcance finito y son susceptibles a la interferencia y la topografía local.

Configuración del servidor NTP para Windows y Linux

Domingo, enero 4, 2009

Network Time Protocol ha sido desarrollado para mantener las computadoras sincronizadas. Todas las computadoras son propensas a la deriva y el tiempo preciso es esencial para muchas aplicaciones de tiempo crítico.

Una versión de NTP está instalada en la mayoría de las versiones de Windows (aunque una versión simplificada llamada SNTP -Simplified NTP- está en versiones anteriores) y Linux, pero se puede descargar gratis desde NTP.org.

Al sincronizar una red, es preferible usar una red dedicada Servidor NTP que recibe una fuente de sincronización de un reloj atómico ya sea a través de transmisiones de radio especializadas o Red de GPS. Sin embargo, muchas referencias de tiempo de Internet están disponibles, algunas más confiables que otras, aunque debe tener en cuenta que las fuentes de tiempo basadas en Internet no pueden ser autenticadas por NTP, lo que deja su computadora vulnerable a las amenazas.

NTP es jerárquico y está ordenado en estrato. Stratum 0 es la referencia de tiempo, mientras que el estrato 1 es un servidor conectado a una fuente de temporización 0 de un estrato y un estrato 2 es una computadora (o dispositivo) conectada a un servidor 1 de estrato.

La configuración básica de NTP se hace usando el archivo /etc/ntp.conf, usted tiene que editarlo y colocar la dirección IP de los servidores de estrato 1 y de estrato 2. Aquí hay un ejemplo de un archivo ntp.conf básico:

el servidor xxx.yyy.zzz.aaa prefiere (la dirección del servidor de hora como time.windows.com)

servidor 123.123.1.0

servidor 122.123.1.0 estrato 3

Driftfile / etc / ntp / drift

El archivo ntp.conf más básico mostrará los servidores 2, uno que también desea sincronizar y una dirección IP. Es una buena limpieza tener más de un servidor como referencia en caso de que uno se caiga.

Un servidor con la etiqueta 'preferir' se usa para una fuente confiable que garantiza que NTP siempre use ese servidor cuando sea posible. La dirección IP se usará en caso de problemas cuando NTP se sincronizará consigo mismo. El archivo de deriva es donde NTP crea un registro de la tasa de deriva del reloj del sistema y lo ajusta automáticamente.

NTP ajustará el tiempo de su sistema pero solo lentamente. NTP esperará al menos diez paquetes de información antes de confiar en la fuente de tiempo. Para probar NTP simplemente cambie el reloj de su sistema por media hora al final del día y la hora de la mañana debería ser correcta.

Corregir el tiempo de red

Lunes, diciembre 22nd, 2008

Las redes distribuidas dependen completamente de la hora correcta. Las computadoras necesitan marcas de tiempo para ordenar eventos y cuando una colección de máquinas trabaja juntas es imprescindible que se ejecuten al mismo tiempo.

Desafortunadamente, las PC modernas no están diseñadas para ser cronometradores perfectos. Sus relojes de sistema son simples osciladores electrónicos y son propensos a la deriva. Esto normalmente no es un problema cuando las máquinas están trabajando de forma independiente, pero cuando se están comunicando a través de una red pueden ocurrir todo tipo de problemas.

Desde correos electrónicos que llegan antes de que hayan sido enviados a fallas del sistema completo, falta de sincronización puede causar problemas incalculables en una red y es por esta razón que los servidores de tiempo de red se utilizan para garantizar que toda la red esté sincronizada.

Servidores de tiempo de red vienen en dos formas: el GPS servidor de tiempo y el servidor de tiempo referenciado por radio. GPS NTP los servidores usan la señal horaria transmitida desde satélites GPS. Esto es extremadamente preciso ya que es generado por un reloj atómico a bordo del satélite GPS. Radio referenciada Servidor NTPs utilizan una transmisión de onda larga emitida por varios laboratorios nacionales de física.

Ambos métodos son una buena fuente de Tiempo Universal Coordinado (UTC) el calendario global del mundo. UTC es utilizado por redes en todo el mundo y la sincronización permite que las redes de computadoras se comuniquen con confianza y participen de transacciones sensibles al tiempo sin errores.

Algunos administradores usan Internet para recibir una fuente de hora UTC. Aunque no se requiere un servidor de tiempo de red dedicado para hacer esto, tiene inconvenientes de seguridad ya que es necesario dejar un puerto abierto en el firewall para que la computadora se comunique con el Servidor NTP, esto puede dejar un sistema vulnerable y abierto al ataque. Además, las fuentes de tiempo de Internet son notoriamente poco confiables ya que muchas de ellas son demasiado inexactas o demasiado lejanas para servir a cualquier propósito útil.

Por qué la necesidad de NTP

Sábado, diciembre 20th, 2008

Network Time Protocol es un protocolo de Internet utilizado para sincronizar los relojes de la computadora con una referencia de tiempo estable y precisa. NTP fue desarrollado originalmente por el profesor David L. Mills en la Universidad de Delaware en 1985 y es un protocolo estándar de Internet.

NTP fue desarrollado para resolver el problema de múltiples computadoras trabajando juntas y teniendo el tiempo diferente. Mientras que, por lo general, el tiempo avanza, si los programas se ejecutan en diferentes computadoras, el tiempo debe avanzar incluso si cambia de una computadora a otra. Sin embargo, si un sistema está por delante del otro, cambiar entre estos sistemas provocaría un tiempo para avanzar y retroceder.

Como consecuencia, las redes pueden ejecutar su propio tiempo, pero tan pronto como se conecte a Internet, los efectos se harán visibles. ¡Solo los mensajes de correo electrónico llegan antes de que se envíen, e incluso se responden antes de que se envíen por correo!

Si bien este tipo de problema puede parecer inocuo a la hora de recibir correos electrónicos, sin embargo, en algunos entornos la falta de sincronización puede tener resultados desastrosos, por eso el control de tráfico aéreo fue una de las primeras aplicaciones para NTP.

NTP usa una única fuente de tiempo y la distribuye entre todos los dispositivos en una red, lo hace usando un algoritmo que determina cuánto ajustar un reloj del sistema para asegurar la sincronización.

NTP funciona de forma jerárquica para garantizar que no haya problemas de tráfico de red ni de ancho de banda. Utiliza una única fuente de tiempo, normalmente UTC (tiempo universal coordinado) y recibe solicitudes de tiempo de las máquinas en la parte superior de la jerarquía, que luego pasan el tiempo más adelante en la cadena.

La mayoría de las redes que utilizan NTP usarán un red servidor de tiempo para recibir su señal de hora UTC. Estos pueden recibir el tiempo de la Red de GPS o transmisiones de radio emitidas por laboratorios nacionales de física. Estos dedicados Servidores de tiempo NTP son ideales ya que reciben tiempo directamente de una fuente de reloj atómico, también son seguros ya que están situados externamente y por lo tanto no requieren interrupciones en el firewall de la red.