Archivo para la categoría 'física cuántica'

¿Han encontrado los científicos más rápido que las partículas de luz?

Miércoles, octubre 5th, 2011

El mundo de la física se metió en un caos este mes cuando los científicos del CERN, el Laboratorio Europeo de Física de Partículas, encontraron una anomalía en uno de sus experimentos, que parecía mostrar que algunas partículas viajaban más rápido que la luz.

El servidor del tiempo puede proporcionar precisión del reloj atómico

Por supuesto, está prohibido viajar más rápido que la luz para cualquier partícula, de acuerdo con la Teoría de la Relatividad Especial de Einstein, pero el equipo OPERA del CERN, que disparó neutrinos alrededor de un acelerador de partículas, viajando por 730 km, descubrió que los neutrinos recorrieron la distancia 20 partes por millones más rápido que los fotones (partículas de luz) lo que significa que rompieron el límite de velocidad de Einstein.

Si bien este experimento podría ser uno de los descubrimientos más importantes en física, los físicos se mantienen escépticos, sugiriendo que una causa podría ser un error generado en las dificultades y complejidades de medir tales altas velocidades y distancias.

El equipo del CERN utilizó GPS servidores de hora, relojes atómicos portátiles y sistemas de posicionamiento GPS para hacer sus cálculos, que proporcionaron precisión en la distancia dentro de 20cm y una precisión de tiempo dentro de los nanosegundos de 10. Sin embargo, las instalaciones están bajo tierra y las señales de GPS y otras transmisiones de datos tuvieron que ser cableadas para el experimento, una latencia que el equipo confía que tomaron en cuenta durante sus cálculos.

Los físicos de otras organizaciones están intentando repetir los experimentos para ver si obtienen los mismos resultados. Cualquiera que sea el resultado, este tipo de investigación innovadora solo es posible gracias a la precisión de los relojes atómicos que pueden medir el tiempo en millonésimas de segundo.

Para sincronizar una red informática con un reloj atómico, no necesita tener acceso a un laboratorio de física como el CERN como simple Servidores de tiempo NTP como galeones NTS 6001 recibirá una fuente precisa de tiempo de reloj atómico y mantendrá todo el hardware en una red dentro de unos pocos milisegundos de él.

Las rarezas del tiempo y la importancia de la precisión

Miércoles, septiembre 14th, 2011

La mayoría de nosotros cree que sabemos cuál es la hora. De un vistazo de nuestros relojes de pulsera o relojes de pared, podemos decir a qué hora es. También creemos que tenemos una idea bastante buena del avance del tiempo de velocidad, un segundo, un minuto, una hora o un día están bastante bien definidos; sin embargo, estas unidades de tiempo son completamente artificiales y no son tan constantes como podemos pensar.

El tiempo es un concepto abstracto, mientras que podemos pensar que es lo mismo para todos, el tiempo se ve afectado por su interacción con el universo. La gravedad, por ejemplo, como observó Einstein, tiene la capacidad de deformar el espacio-tiempo alterando la velocidad a la que pasa el tiempo, y mientras todos vivimos en el mismo planeta, bajo las mismas fuerzas gravitacionales, hay diferencias sutiles en la velocidad en la que el tiempo pasa.

Usando relojes atómicos, los científicos pueden establecer el efecto que la gravedad de la Tierra tiene a tiempo. El nivel más alto sobre el nivel del mar es un reloj atómico, el tiempo más rápido viaja. Si bien estas diferencias son mínimas, estos experimentos demuestran claramente que las postulaciones de Einstein fueron correctas.

Los relojes atómicos se han usado para demostrar algunas de las otras teorías de Einstein con respecto al tiempo también. En sus teorías de la relatividad, Einstein argumentó que la velocidad es otro factor que afecta la velocidad a la que pasa el tiempo. Al colocar relojes atómicos en naves espaciales en órbita o en aviones que viajan a gran velocidad, el tiempo medido por estos relojes difiere de los relojes que permanecen estáticos en la Tierra, otra indicación de que Einstein tenía razón.

Antes de los relojes atómicos, medir el tiempo hasta tal grado de precisión era imposible, pero desde su invención en los 1950, no solo las postulaciones de Einstein demostraron ser correctas, sino que también hemos descubierto algunos otros aspectos inusuales de cómo consideramos el tiempo.

Si bien la mayoría de nosotros consideramos un día como 24-horas, con todos los días teniendo la misma longitud, los relojes atómicos han demostrado que cada día varía. Además, relojes atómicos también han demostrado que la rotación de la Tierra se está desacelerando gradualmente, lo que significa que los días se están volviendo lentamente más largos.

Debido a estos cambios en el tiempo, la escala de tiempo global del mundo, UTC (Tiempo Universal Coordinado) necesita ajustes ocasionales. Cada seis meses más o menos, se agregan segundos intercalares para garantizar que el UTC se ejecute a la misma velocidad que un día de la Tierra, lo que explica la disminución gradual de la rotación del planeta.

Para las tecnologías que requieren altos niveles de precisión, estos ajustes regulares de tiempo son contabilizados por el protocolo de tiempo NTP (Network Time Protocol) de modo que una red informática que utiliza un NTP servidor de tiempo siempre se mantiene fiel a UTC.

Relojes atómicos cuánticos La precisión del futuro

Viernes, febrero 26th, 2010

El reloj atómico no es una invención reciente. Desarrollado en el 1950, el reloj atómico tradicional basado en cesio nos ha proporcionado un tiempo preciso durante medio siglo.

La Página Web de reloj atómico de cesio se ha convertido en la base de nuestro tiempo, literalmente. los Sistema Internacional de Unidades (SI) define un segundo como cierto número de oscilaciones del átomo de cesio y los relojes atómicos rigen muchas de las tecnologías que vivimos con un uso diario: Internet, navegación por satélite, control del tráfico aéreo y semáforos para nombrar pero unos pocos.

Sin embargo, los desarrollos recientes en relojes cuánticos ópticos que usan átomos individuales de metales como el aluminio o el estroncio son miles de veces más precisos que los relojes atómicos tradicionales. Para poner esto en perspectiva, el mejor reloj atómico de cesio utilizado por institutos como NIST (Instituto Nacional de Estándares y Tiempo) o NPL (National Physical Laboratory) para gobernar el calendario global del mundo UTC (Tiempo universal coordinado), es preciso en un segundo cada 100 millón de años. Sin embargo, estos nuevos relojes ópticos cuánticos tienen una precisión de un segundo cada 3.4 mil millones de años, casi tanto como la antigüedad de la Tierra.

Para la mayoría de la gente, su único encuentro con un reloj atómico es recibir su señal horaria. red servidor de tiempo or Dispositivo NTP (Protocolo de tiempo de red) con el fin de sincronizar dispositivos y redes y estas señales de reloj atómico se generan utilizando relojes de cesio.

Y hasta que los científicos del mundo acuerden un solo átomo para reemplazar el cesio y un diseño de reloj único para mantener UTC, ninguno de nosotros podrá aprovechar esta increíble precisión.

Cómo funciona un reloj atómico

Sábado, octubre 24, 2009

Los relojes atómicos son los cronómetros más precisos que tenemos Son millones de veces más precisos que los relojes digitales y pueden mantener el tiempo durante cientos de millones de años sin perder ni un segundo. Su uso ha revolucionado la forma en que vivimos y trabajamos, y han permitido tecnologías como los sistemas de navegación por satélite y el comercio mundial en línea.

Pero, como trabajan? Por extraño que parezca, los relojes atómicos funcionan de la misma manera que los relojes mecánicos ordinarios. Pero en lugar de tener un resorte en espiral y una masa o péndulo, usan las oscilaciones de los átomos. Los relojes atómicos no son radiactivos ya que no dependen de la descomposición atómica sino que dependen de las pequeñas vibraciones a ciertos niveles de energía (oscilaciones) entre el núcleo de un átomo y los electrones circundantes.

Cuando el átomo recibe energía de microondas exactamente a la frecuencia correcta, cambia el estado de energía, este estado es constante e inmutable y las oscilaciones se pueden medir exactamente como las marcas de un reloj mecánico. Sin embargo, mientras los relojes mecánicos marcan cada segundo, relojes atómicos 'tic' varios miles de millones de veces por segundo. En el caso de los átomos de cesio, más comúnmente utilizados en los relojes atómicos, marcan 9,192,631,770 por segundo, que ahora es la definición oficial de un segundo.

Los relojes atómicos ahora gobiernan a toda la comunidad global como una escala de tiempo universal UTC (Tiempo universal coordinado) basado en la hora del reloj atómico se ha desarrollado para garantizar la sincronización. Señales de reloj atómico UTC puede ser recibido por servidores de tiempo de red, a menudo denominado Servidores NTP, que puede sincronizar las redes de computadoras dentro de unos pocos milisegundos de UTC.

Hechos del tiempo

Jueves, julio 2nd, 2009

Desde relojes de pulsera hasta relojes atómicos y servidores de tiempo NTP, la comprensión del tiempo se ha vuelto crucial para muchas tecnologías modernas, como la navegación por satélite y las comunicaciones globales.

Desde la dilatación del tiempo hasta los efectos de la gravedad a tiempo, el tiempo tiene muchas facetas extrañas y maravillosas que los científicos solo están empezando a comprender y utilizar. Aquí hay algunos hechos interesantes, raros e inusuales sobre el tiempo:

• El tiempo no está separado del espacio, el tiempo constituye lo que Einstein llamó el espacio-tiempo en cuatro dimensiones. El tiempo en el espacio puede deformarse por la gravedad, lo que significa que el tiempo se ralentiza cuanto mayor sea la influencia gravitacional. Gracias a relojes atómicos, el tiempo en la tierra se puede medir en cada pulgada siguiente sobre la superficie de la tierra. Eso significa que todos los pies de los cuerpos son más jóvenes que su cabeza a medida que el tiempo corre más lento cuanto más bajo llega al suelo.

• El tiempo también se ve afectado por la velocidad. La única constante en el universo es la velocidad de la luz (en el vacío) que es siempre la misma. Debido a las famosas teorías de la relatividad de Einstein, cualquiera que viaje a una velocidad cercana a la de la luz, un viaje hacia un observador que habría tomado miles de años habría pasado en segundos. Esto se llama dilatación del tiempo.

• No hay nada en la física contemporánea que prohíba el viaje en el tiempo tanto hacia adelante como hacia atrás en el tiempo.

• Hay 86400 segundos en un día, 600,000 en una semana, más de 2.6 millones en un mes y más de 31 millones en un año. Si vives para tener 70 años, habrás sobrevivido más de 5.5 mil millones de segundos.

• Un nanosegundo es una billonésima de segundo o aproximadamente el tiempo que tarda la luz en recorrer un pie 1 (30 cm).

• Un día nunca dura 24 horas. La rotación de la Tierra se está acelerando gradualmente, lo que significa que la escala de tiempo global UTC (tiempo universal coordinado) debe tener segundos intercalares añadidos una o dos veces al año. Estos segundos intercalares se contabilizan automáticamente en cualquier sincronización de reloj que utilice NTP (Protocolo de tiempo de red) como un dedicado servidor de tiempo NTP.

Los alemanes entran en la carrera para construir el reloj más preciso del mundo

Lunes, Junio ​​8th, 2009

Tras el éxito de los investigadores daneses trabajando en conjunto con NIST (Instituto Nacional de Estándares y Tiempo), quien reveló el reloj atómico más preciso del mundo a principios de este año; Científico alemán ha entrado en la carrera para construir el reloj más preciso del mundo.

Investigadores del Physikalisch-Technische Bundesanstalt (PTB) en Alemania están usando nuevos métodos de espectroscopía para investigar sistemas atómicos y moleculares y esperan desarrollar un reloj basado en un solo átomo de aluminio.

EXCURSIONES relojes atómicos utilizado para la navegación por satélite (GPS), como referencias para la red informática NTP servidores y el control del tráfico aéreo se ha basado tradicionalmente en el átomo de cesio. Sin embargo, la próxima generación de relojes atómicos, como la revelada por NIST, que se afirma que es exacta en un segundo cada 300 millones de años, utiliza los átomos de otros materiales como el estroncio, que según los científicos puede ser potencialmente más preciso que el cesio. .

Los investigadores de PTB han optado por utilizar átomos de aluminio individuales y creen que están en vías de desarrollar el reloj más preciso que haya existido y creen que existe un gran potencial para que dicho dispositivo nos ayude a comprender algunos de los aspectos más complicados de la física.

La cosecha actual de relojes atómicos permite tecnologías como la navegación por satélite, el control del tráfico aéreo y la sincronización del tiempo de la red utilizando NTP servidores pero se cree que la exactitud de los aumentos de la próxima generación de relojes atómicos podría usarse para revelar algunas de las cualidades más enigmáticas de la ciencia cuántica, como la teoría de cuerdas.

Los investigadores afirman que los nuevos relojes proporcionarán tal precisión que incluso podrán medir las diminutas diferencias de gravedad dentro de cada centímetro sobre el nivel del mar.

El Atom y el tiempo de mantenimiento

Viernes, mayo 29th, 2009

Armas nucleares, computadoras, GPS, relojes atómicos y datación por carbono: hay mucho más en los átomos de lo que piensas.

Desde el comienzo del siglo XX, la humanidad ha estado obsesionada con los átomos y las minucias de nuestro universo. Gran parte de la primera parte del siglo pasado, la humanidad se obsesionó con el aprovechamiento del poder oculto del átomo, que nos reveló la obra de Albert Einstein y que finalizó Robert Oppenheimer.

Sin embargo, nuestra exploración del átomo ha sido mucho más que solo armas. El estudio de los átomos (mecánica cuántica) ha estado en la raíz de la mayoría de nuestras tecnologías modernas, como computadoras e Internet. También está a la vanguardia de la cronología: la medición del tiempo.

El átomo juega un papel clave tanto en el control del tiempo como en la predicción del tiempo. El reloj atómico, que se utiliza en todo el mundo mediante redes informáticas utilizando NTP servidores y otros sistemas técnicos como el control del tráfico aéreo y la navegación por satélite.

Los relojes atómicos trabajar supervisando las oscilaciones de frecuencia extremadamente alta de átomos individuales (tradicionalmente cesio) que nunca cambia en estados energéticos particulares. Como los átomos de cesio resuenan sobre un 9 mil millones de veces por segundo y nunca lo altera su frecuencia, hace que el m sea altamente preciso (perdiendo menos de un segundo cada 100 millón de años)

Pero los átomos también se pueden usar para calcular el tiempo preciso y preciso, pero también se pueden utilizar para establecer la edad de los objetos. La datación por carbono es el nombre dado a este método que mide la descomposición natural de los átomos de carbono. Todos nosotros estamos hechos principalmente de carbono y, como otros elementos, el carbono "decae" a lo largo del tiempo donde los átomos pierden energía emitiendo partículas ionizantes y radiación.

En algunos átomos, como el uranio, esto ocurre muy rápidamente, sin embargo, otros átomos como el hierro son altamente estables y se descomponen muy, muy lentamente. El carbono, aunque se descompone más rápido que el hierro, aún tarda en perder energía, pero la pérdida de energía es exacta con el tiempo, por lo que al analizar los átomos de carbono y medir su fuerza puede determinarse con precisión cuando se formó originalmente el carbono.

Llevar la precisión del reloj atómico a su escritorio

Sábado, mayo 16th, 2009

Los relojes atómicos han sido una gran influencia en nuestras vidas modernas con muchas de las tecnologías que han revolucionado la forma en que vivimos nuestras vidas, confiando en sus capacidades de cronometraje ultra precisas.

Los relojes atómicos son muy diferentes a otros cronómetros; un reloj o reloj normal mantendrá el tiempo con bastante precisión, pero perderá uno o dos cada día. Un reloj atómico, por otro lado, no perderá un segundo en millones de años.

De hecho, es justo decir que un reloj atómico no mide el tiempo, sino que es el fundamento en el que basamos nuestras percepciones del tiempo. Permítanme explicar, el tiempo, como demostró Einstein, es relativo y la única constante en el universo es la velocidad de la luz (aunque es un vacío).

Medir el tiempo con cualquier precisión real es, por lo tanto, difícil ya que incluso la gravedad en la Tierra sesga el tiempo, ralentizándolo. También es casi imposible basar el tiempo en cualquier punto de referencia. Históricamente, siempre hemos utilizado la revolución de la tierra y la referencia a los cuerpos celestes como base para nuestro tiempo (24 horas en un día = una revolución de la Tierra, 365 días = una revolución de la tierra alrededor del Sol, etc.).

Lamentablemente, la rotación de la Tierra no es un marco de referencia preciso para que nuestro tiempo se mantenga. La Tierra se ralentiza y acelera en su revolución, lo que significa que algunos días son más largos que otros.

Los relojes atómicos
sin embargo, usó la resonancia de átomos (normalmente cesio) en estados energéticos particulares. Como estos átomos vibran a frecuencias exactas (o un número exacto de veces), esto puede usarse como una base para contar el tiempo. Entonces, después del desarrollo del reloj atómico, el segundo se ha definido como más de 9 mil millones de 'tics' de resonancia del átomo de cesio.

La naturaleza ultra precisa de los relojes atómicos es la base de tecnologías como la navegación por satélite (GPS), el control del tráfico aéreo y el comercio por Internet. Es posible usar la naturaleza precisa de los relojes atómicos para sincronizar redes de computadoras también. Todo lo que se necesita es un NTP servidor de tiempo (Network Time Protocol).
NTP servidores reciba el tiempo de los relojes atómicos a través de una señal de transmisión o la red de GPS, luego lo distribuye entre una red que garantiza que todos los dispositivos tengan exactamente la misma hora ultraprecisa.

La próxima generación de relojes atómicos precisos comienza a funcionar a medida que los científicos del NIST revelan un nuevo reloj de estroncio

Domingo por, de abril de 26th, 2009

Esos pioneros cronológicos en NIST se han asociado con la Universidad de Colorado y han desarrollado el reloj atómico más preciso del mundo hasta la fecha. El reloj basado en estroncio es casi dos veces más preciso que los relojes de cesio actuales utilizados para gobernar UTC (Tiempo universal coordinado) ya que pierde solo un segundo cada 300 millón de años.

Estroncio basado relojes atómicos ahora se lo ve como el camino a seguir en el cronometraje ya que se pueden lograr niveles más altos de precisión que simplemente no son posibles con el átomo de cesio. Los relojes de estroncio, al igual que sus predecesores, funcionan al aprovechar la vibración natural pero altamente consistente de los átomos.

Sin embargo, estas nuevas generaciones de relojes utilizan rayos láser y temperaturas extremadamente bajas cercanas al cero absoluto para controlar los átomos y se espera que sea un paso adelante para crear un reloj perfectamente preciso.

Esta precisión extrema puede parecer un paso demasiado e innecesario, pero los usos para tal precisión son muchos y cuando se consideran las tecnologías que se han desarrollado basadas en la primera generación de relojes atómicos como la navegación GPS, Servidor NTP sincronización y transmisión digital un nuevo mundo de tecnología emocionante basado en estos nuevos relojes podría estar a la vuelta de la esquina.

Mientras que actualmente el tiempo global del mundo, UTC, se basa en el tiempo contado por una constelación de relojes de cesio (y dicho sea de paso la definición de un segundo como un poco más de 9 mil millones de garrapatas de cesio), se cree que cuando el Comité Consultivo Tiempo y frecuencia en la Oficina Internacional de Poids et Mesures (BIPM) el próximo encuentro discutirá si hacer que la próxima generación de relojes atómicos el nuevo estándar.

Sin embargo, los relojes de estroncio no son el único método de tiempo altamente preciso. El año pasado, un reloj cuántico, también desarrollado en NIST, logró una precisión de 1 de segundo en 1 mil millones de años. Sin embargo, este tipo de reloj no se puede monitorear directamente y requiere un esquema más complejo para controlar el tiempo.

La importancia del reloj atómico

Viernes, Marzo 20th, 2009

La mayoría de la gente ha escuchado vagamente reloj atómico y supongo que saben lo que es, pero muy pocas personas saben cuán importantes son los relojes atómicos para el funcionamiento de nuestra vida cotidiana en el siglo XXI.

Hay tantas tecnologías que dependen de relojes atómicos y sin muchas de las tareas que damos por sentado sería imposible. El control del tráfico aéreo, la navegación por satélite y el comercio por Internet son solo algunas de las aplicaciones que dependen de la cronometría ultraprecisa de un reloj atómico.

Exactamente qué reloj atómico es, a menudo es mal entendido. En términos simples, un reloj atómico es un dispositivo que usa las oscilaciones de los átomos en diferentes estados de energía para contar tics entre segundos. Actualmente el cesio es el átomo preferido porque tiene más de 9 billones de tics por segundo y, debido a que estas oscilaciones nunca cambian, lo convierte en un método altamente preciso para mantener el tiempo.

Los relojes atómicos a pesar de lo que mucha gente dice que solo se encuentran en laboratorios de física a gran escala, como NPL (Laboratorio Físico Nacional del Reino Unido) y NIST (Instituto Nacional de Estándares y Tiempo de EE. UU.). A menudo las personas sugieren que tienen un reloj atómico que controla su red informática o que tienen un reloj atómico en su pared. Esto no es verdad y a lo que las personas se están refiriendo es que tienen un servidor de reloj o tiempo que recibe el tiempo de un reloj atómico.

Dispositivos como el NTP servidor de tiempo a menudo reciben señales de reloj atómico de lugares como NIST o NPL a través de la radio de onda larga. Otro método para recibir tiempo de los relojes atómicos es usar la red GPS (Sistema de Posicionamiento Global).

La red de GPS y la navegación por satélite son, de hecho, un buen ejemplo de por qué sincronización de reloj atómico es muy necesario con un alto nivel de precisión. Los relojes atómicos modernos como los que se encuentran en NIST, NPL y en el interior de los satélites GPS en órbita son precisos en un segundo cada 100 millón de años más o menos. Esta precisión es crucial cuando se examina cómo funciona algo así como el sistema de navegación satelital GPS de un automóvil.

Un sistema GPS funciona triangulando las señales horarias enviadas desde tres o más satélites GPS separados y sus relojes atómicos incorporados. Debido a que estas señales viajan a la velocidad de la luz (casi 100,000km por segundo), una inexactitud de incluso un milisegundo completo podría sacar la información de navegación en 100 kilómetros.

Este alto nivel de precisión también es necesario para tecnologías como el control del tráfico aéreo que garantiza que nuestros cielos atestados sigan siendo seguros e incluso críticos para muchas transacciones en Internet, como el comercio de derivados, donde el valor puede subir y bajar cada segundo.